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Abstract

This paper investigates entropy generation in a Casson nanofluid flow past an electromagnetic
stretching Riga plate. Entropy generation is a measure of irreversibility factors in thermody-
namic processes. It is a common feature in heat transfer studies, and as such, the study includes
the effect of viscous dissipation. We solve the model equations using the spectral local lineariza-
tionmethod. The study considers the impact of some other physical parameters like the Casson,
velocity ratio, and electromagnetic parameters. A good correlation is achievedwhen the present
results are compared with published literature. The results indicate that the velocity ratio pa-
rameter significantly influences the fluid flow, temperature, and concentration profiles. The en-
tropy generation increases with an increase in concentration and Brinkmann number, whereas
an opposite behavior is observed for increasing the value of the modified Hartmann number.
Again, increasing the Casson parameter increases the temperature and concentration profiles,
whereas the velocity profile reduces.
Keywords: entropy generation; Riga plate; Cassonnanofluid; spectral local linearizationmethod.
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1 Introduction

Choi [8] introduced the concept of nanofluids. In his pioneer work on nanofluids, he proposed
that nanoparticles be suspended in a certain base fluid such as oil, water, kerosene, and ethylene
glycol. A nanofluid is a fluid that contains a suspension of nanoparticles. It is assumed that the
nanoparticles are uniformly and stably distributed in a base fluid. Das et al. [10] pointed out
some unique nanofluid features. These are the abnormal enhancement of thermal conductivity,
stability, and particle size dependence. Buongiorno [6] attempted to explain the increase in the
thermal conductivity of nanofluids. He introduced a model that took into account the particle
Brownianmotion and thermophoresis diffusion. Researchers used Buongiorno’s model and stud-
ied nanofluid flows with the magnetic field, thermal radiation, viscous dissipation, porosity, and
stability. Noghrehabadi et al. [30] investigated the effect of partial slip(that is, the Navier’s con-
dition) on the boundary layer flow and heat transfer of nanofluids past a stretching sheet. They
observed that the slip parameter strongly influences the flow velocity, and the surface shear stress
on the stretching sheet. They concluded that there is a decrease in the momentum boundary layer
thickness and an increase in the thermal boundary layer thickness.

Khan and Pop [18] investigated numerically the problem of laminar fluid flow, which results
from the stretching of a flat surface in a nanofluid. The model they studied included the effect of
Brownian motion and thermophoresis diffusion. They found that the reduced Sherwood number
increased with the parameters considered in the study. Makinde et al.[22] studied the boundary
layer flow in a nanofluid using a convective heating boundary condition. Their result showed that
for fixed values of the Prandtl, Lewis, and Biot numbers, the local temperature rises as the Brow-
nian motion and thermophoresis effects intensify. However, when the Prandtl number, Brown-
ian motion, thermophoresis diffusion, and Biot number are fixed, the temperature distribution is
slightly affected. Hamad [15] examined heat transfer in an incompressible viscous nanofluid flow
past a semi-infinite vertical stretching sheet in the presence of a magnetic field.

Casson fluid is a non-newtonian fluid. It can be defined as a shear-thinning liquid assumed
to have an infinite viscosity at zero rates of shear, yield stress below which no flow occurs, and
a zero viscosity at an infinite rate of shear, Dash et al.[11]. It behaves like an elastic solid at low
shear strain, and above a critical stress value, it behaves like a Newtonian fluid. Some examples
of Casson fluid are tomato, honey, and human blood [26]. Recently, studies in Casson nanofluid
have gained popularity. [27] carried out an analysis on Casson nanofluid flow past a non-linearly
stretching sheetwithmagnetic field effects. They concluded that Brownianmotion has a negligible
impact on temperature and heat transfer rate on the sheet; also, the skin friction coefficient values
for the Casson fluid are greater than those of the Newtonian fluid.

Makanda et al. [21] analyzed the diffusion of chemically reactive species in Casson fluid flow
over an unsteady stretching surface. They observed that with an increase in magnetic and perme-
ability parameters, the velocity profiles decreases, and the skin friction increases. In contrast, the
rate of heat, as well as the concentration profiles, are decreased. Raju et al.[34] examined the flow,
heat, andmass transfer behavior in a Casson fluid flowpast an exponentially permeable stretching
surface. Their study included magnetic field effects, thermal radiation, viscous dissipation, heat
source, and chemical reaction. They showed that chemical reaction andmagnetic field parameters
tend to minimize the skin friction coefficient. Oyelakin et al.[32] studied the combined effects of
Soret and Dufour numbers on the fluid flow, heat, and mass transfer of a Casson nanofluid over
an unsteady stretching sheet with thermal radiation and heat generation.

Kuznetsov and Neild [20] revisited the problem of natural convective boundary layer flow of
a nanofluid past a vertical plate, including the effects of Brownian motion and thermophoresis
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diffusion. Their newmodel argued that the nanofluid particle on the boundary should be passive
rather than actively controlled to have a more realistic model.

A newmechanism that produces wall-parallel Lorentz force was developed by [12]. They pro-
posed an electromagnetic actuator, which consists of permanent magnets and electrodes scaled
on a plane surface. The setup is known as Riga-plate. The advantage of such a setup is that it
prevents boundary layer separation and reduces turbulence effects. Additionally, it diminishes
pressure drag and friction in submarines. Mixed convection nanofluid flow bounded by a convec-
tively heated vertical Riga-plate has been studied by [3, 4]. In contrast, [16] studied the flow of a
nanofluid past a convectively heated Riga-plate with variable thickness.

Entropy generation is associated with thermodynamic irreversibility, a common feature in
most heat transfer processes. [2] studied fluid flow heat and mass transfer and entropy gener-
ation in a steady Casson nanofluid flow past a stretching sheet with velocity slip and convective
boundary condition. Entropy generation on MHD Casson nanofluid flow over a porous stretch-
ing/shrinking surface was studied by [33]. Their study included the influence of nonlinear ther-
mal radiation and chemical reaction. Entropy generation on nanofluid flow through a horizontal
Riga plate was investigated by [1]. Entropy generation in unsteady two-dimensional squeezing
flow between two Riga-plates was studied by [5]. Their study included a Cattaneo Christov heat
flux model and a convective boundary condition.

Recently, Oyelakin and Sibanda [31] examined entropy generation in a Casson nanofluid ra-
diative flow. They assumed a thermophoretic diffusion at the solutal boundary and showed that
the entropy generation number increases with increment in temperature difference. Also, the ir-
reversibility of heat transfer is a significant source for entropy generation. Entropy generation
on double-diffusive nanofluid flow with activation energy was investigated by [19]. [13][14] ob-
served that the entropy generation diminishes by the dynamic viscosity of fluid used in the study.

The study of entropy generation in a Casson nanofluid flow past an electromagnetic stretching
Riga sheet has not been given much consideration to the best of the authors’ knowledge. This
paper aims to study the fluid flow, heat transfer, mass transfer, and entropy generation effects in
a Casson nanofluid flow on an electromagnetic sheet. The traditional Casson nanofluid model is
revised to include the impact of the electromagnetic parameter. In this paper, we use the spectral
local realization method proposed by Motsa [24] to solve the model equations. The spectral local
linearizationmethod has the quirk of fast convergence and good accuracy, as shown in some recent
studies [35, 7]. This study has a wide application in numerous industrial disciplines such as the
cooling of electronic devices, transportation, etc.

2 Mathematical Formulation

Consider a coordinate system that originates from the leading edge of the Riga-plate. In this
study,we focus on the Buongiornomodel, which considers the Brownianmotion and thermophore-
sis diffusion of nanoparticles. Moreover, the influence of viscous dissipation is considered in the
flow. Here, u and v are the velocity components in the x and y directions, respectively. The x-axis
is assumed to be along the sheet, and the y-axis is perpendicular to it, as shown in Figure 1.
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Figure 1: Physical configuration and coordinate system of the problem.

Awall parallel to Lorentz force of exponentially decaying nature is created due to an electromag-
netic field produced by the Riga-plate. The velocity at the ambient fluid is denoted by u∞(x) = cx,
where c is a positive constant. Using the above assumptions, the boundary layer equations are [17]
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The associated boundary conditions are

u = uw(x) = ax, v = 0, T = Tw, C = Cw as y = 0, (5)
u→ u∞(x) = cx, T → T∞, C → C∞ as y →∞, (6)

where u and v are the respective velocities along x and y directions., β is the Casson number, C
and T are solutal concentration and temperature, respectively. The heat capacity of the fluid be
τ = ε(ρc)p/(ρc)f with (ρc)f and (ρc)p are the effective heat capacity of the nanoparticle material,
DB , and DT are the Brownian diffusion coefficient and thermophoresis diffusion coefficient, re-
spectively, ρ is the density of the fluid, j0 is the density of current, andM0 is the magnetization of
magnets.

To transform the partial differential equations into a system of ordinary differential equations,
we introduce the following dimensionless variables

ψ = x
√
aνff(η), η =

√
a

νf
y, θ(η) =

T − T∞

Tw − T∞
, φ(η) =

C − C∞

Cw − C∞
. (7)
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Using the stream function equations,

u = axf
′
(η) and v = −√aνff(η),

the continuity equation in (1) is readily satisfied and the dimensionless form of equations (2) -
(4) become (

1 +
1

β

)
f ′′′ + ff ′′ − f ′2 + Ze−ηδ + ε2 = 0, (8)

1
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θ′′ + fθ′ +

(
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1
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)
Ecf ′′2 +Nbφ′θ′ +Ntθ′2 = 0, (9)
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and the corresponding dimensionless boundary conditions become:
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′
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f
′
(∞)→ ε, θ

′
(∞)→ 0, φ

′
(∞)→ 0, (12)

where Pr =
νf (ρcp)f
Kf

is the Prandtl number, Le =
νf
DB

is the Lewis number, Nb = τDB
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w
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The coefficient of skin friction, the local Nusselt number and the local sherwood number are
given as
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Substituting (14) into (13), we obtain
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Next, substitute (7) into (15), to give

Re
1
2
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β

)
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− 1
2

x Nux = −θ′(0),

Re
− 1

2
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where Rex = uwx/νf is the Reynolds number.
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3 Entropy Generation Analysis

The entropy generation for the Casson nanofluid is expressed by [5]
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T 2
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)
. (17)

In equation (17), the first term is due to heat transfer, the second term is due to fluid friction, and
the third term is due to mass transfer. The characteristic entropy generation is defined as

S0 =
kf (Tw − T∞)

2

T 2
∞x

2
. (18)

Using the similarity transformations defined in equation (7), the entropy generation in dimen-
sionless form is written as

NG =
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S0

= Reθ
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Ω
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)
f

′′2 + λ1Re
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Ω

)
θ
′
φ

′
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where Re,Br,Ω, λ1 and χ are the Reynold’s number, Brinkmann number, dimensionless temper-
ature, diffusion coefficient and dimensionless concentration, respectively, and are defined as

Re =
uwx

νf
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µfu
2
w

kf (Tw − T∞)
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T∞
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RDBC∞
kf
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C∞
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In irreversibility studies, a ratio of the heat transfer irreversibility to total irreversibility is termed
the Bejan number and is defined as

Be =
Reθ

′2

Reθ′2 +
BrRe

Ω

(
1 + 1

β

)
f ′′2 + λ1Re

(χ
Ω

)2

φ′2 + λ1Re
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Ω

)
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. (21)

Three cases are examined for the Bejan number: Firstly, if Be < 0.5, this implies that the total
irreversibility dominates. Secondly, if Be > 0.5, this means that the heat transfer irreversibility
dominates. Lastly, ifBe = 1, this implies that the irreversibility results from the heat transfer only.

4 Method of Solution

To solve the differential equations in (8) - (10), we use the spectral local linearization method
as described by [23]. Researchers have used the spectral local linearization method to solve math-
ematical model equations [28, 39]. The method has proved to be highly convergent with a high
accuracy level. The method is described in details by [23, 37, 36]. The local linearization scheme
corresponding to equations (8) - (10) is

a0,rf
′′′
r+1 + a1,rf

′′
r+1 + a2,rf

′
r+1 + a3,rfr+1 = R1,r, (22)

b0,rθ
′′
r+1 + b1,rθ

′
r+1 = R2,r, (23)

φ′′r+1 + c1,rφ
′
r+1 = R3,r, (24)
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where the subscript r+1 and r represent the current iteration and previous iterations, respectively.
The variable coefficients ai,r, bi,r and ci,r(i = 1, 2, 3, · · · ) are defined as:

a0,r =

(
1 +

1

β

)
, a1,r = fr, a2,r = −2f ′r, a3,r = f ′′r , b0,r =

1

Pr
, b1,r = fr +Nbφ′r + 2Ntθ′r,

and c1,r = Lefr.

The right hand sides are given as

R1,r = a0,rf
′′′
r + a1,rf

′′
r + a2,rf

′
r + a3,rfr − F1, (25)

K2,r = b0,rθ
′′
r + b1,rθ

′
r − F2, (26)

R3,r = φ′′r + c1,rφ
′
r − F3, (27)

where

F1 =

(
1 +

1

β

)
f ′′′r + frf

′′
r − f ′2r + Ze−ηδ + ε2, (28)

F2 =
1

Pr
θ′′r + frθ

′
r +

(
1 +

1

β

)
Ecf ′′2r +Nbφ′rθ

′
r +Ntθ′2r , (29)

F3 = φ′′r + Lefrφ
′
r +

Nt

Nb
θ′′r . (30)

We solve the equations starting from a given set of suitable initial approximations. The semi-
infinite domain [0,∞] to a truncated domain [0, L∞], where, L∞ is a finite number which is large
enough to represent the flow conditions at ∞. η ∈ [0, L∞] is now transformed to x ∈ [−1, 1]
using a suitable linear transformation. The Chebyshev differentiation matrixD as defined in [40]
is introduced to estimate the derivatives of the unknown variables at the collocation points as
matrix vector product represented as

df

dη
=

Nx∑
j=0

Djkf(xj) = DF, k = 0, 1, 2, · · · , Nx, (31)

whereNx+1 is the number of collocationpoints,D = 2D/C∞ andF = [f(x0), f(x1), · · · , f(xNx)]T

is a vector function at the collocation points. Higher order derivatives are obtained as powers of
D, that is,

dsf

dηs
= DsF, (32)

where s is the order of the derivative and the matrixD is of size (Nx + 1)× (Nx + 1). The Gauss-
Lobatto points are chosen to define the nodes in [−1, 1] as

xi = cos
πi

Nx
, i = 0, 1, · · · , Nx; −1 ≤ x ≤ 1. (33)
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Applying (31) to the scheme in (22) - (24), the decoupled system may be expressed as(
a0,rD

3 + a1,rD
2 + a2,rD + a3,rI

)
Fr+1 = R1,r, (34)(

b0,rD
2 + b1,rD

)
θr+1 = R2,r, (35)(

D2 + c1,rD
)
φr+1 = R3,r (36)

where I is an (Nx+ 1)× (Nx+ 1) identity matrix, the bold variable coefficients represent diagonal
matrices.
In a more compact form,

A1Fr+1 = R1,r,

A2θr+1 = R2,r,

A3φr+1 = R3,r, (37)

where

A1 = a0,rD
3 + a1,rD

2 + a2,rD + a3,rI,

A2 = b0,rD
2 + b1,rD,

A3 = D2 + c1,rD. (38)

5 Results and Discussion

In this section, we discuss the significance of the parameters on the velocity, temperature and
concentration profiles. The conservation equations are solved using the spectral local linearization
method. We found that the outcomes of this problem is similar trend to somepreviously published
works [9], [29], [38].

Figures 2 - 4 show the Casson parameter’s effect on the velocity, temperature, and concentra-
tion profiles while keeping the other parameters fixed. In figure 2 shows that the velocity profile
is decreasing, and as such, the momentum boundary layer thickness increases. Figure 3 shows
that increasing the Casson parameter enhances the temperature profile and increases the thermal
boundary layer thickness. Figure 4 depicts the concentration profile, which increases with the
Casson parameter due to an enhancement in the solutal boundary layer thickness.

Figures 5 - 7 show the effect of velocity ratio parameter on the velocity, temperature, and con-
centration profiles. From figure 6, we note that the velocity profile decreases when the velocity
ratio is less than unity. In comparison, the velocity profile increases when the value of the velocity
ratio is greater than unity. This is a similar trend to those obtained in [25]. Figures 6 and 7 show
that both temperature and concentration profiles are decreasingwhen the velocity ratio parameter
is increasing.
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Figures 8 - 10 illustrate graphs of the velocity, temperature, and concentration profileswhen the
modified Hartmann number is increased. In figure 8, we note that there is a significant increase in
the velocity profiles. The Lorentz force effect is observed when we vary the modified Hartmann
number. Generally, the Lorentz force offers resistance to the fluid flow. Here the higher values of
the modified Hartmann number lead to a decrease in the Lorentz forces’ effect. Thus, an increase
in velocity distribution is observed.

Figures 9 and 10 show the effect of modified Hartmann number on temperature and concen-
tration profiles. We can see from the figures that the temperature and the concentration profiles
decrease as the modified Hartmann number is increasing. This leads to a decrease in the thermal
and solutal boundary layers. The reason behind such behavior is that an increase in the modi-
fied Hartmann number amplifies the Lorentz force, which resists the fluid motion. Due to this
resistance, a decrease in temperature and solutal distributions are observed.

Figures 11 - 16 portray the impact of appropriate parameters on the entropy generation. The
influence of the Reynolds number Re on the entropy generation number NG is depicted from
figure 11. Entropy generation is an increasing function of Re. This implies that the enhancement
in the entropy production is due to the dominance in the inertial forces, that is, the Reynolds
number’s higher values. Figure 12 shows that with an increase in the Brinkmann number, entropy
generation increases. Higher values of the Brinkmann number indicates higher frictional heating
in the system.

Figure 13 depicts that with increasing Casson parameter values, entropy generation decreases.
Figure 14 illustrates that entropy generation decreases with the enhancement in modified Hart-
mann number. An increase in the Hartmann number shows a stronger Lorentz force; this force
retards the flow and increases the entropy generation. Figure 15 shows that with the decrease
in temperature, entropy generation increases. Entropy is high in regions adjacent to walls. Thus
there is a lesser heat transfer in some parts of the sheet due to vanishing temperature gradients.
Figure 16 depicts the impact of the dimensionless concentration difference χ. For fixed value of
the dimensionless temperatureΩ = 1, the entropy generation numberNG increases as χ increases,
for a given value of η. This increase is due to the contribution of mass transfer to the entropy gen-
eration, and this augmentation continues up to a certain value of η.

We show the impact of the Bejan number on some parameters in Figures 17 - 20. For all param-
eters considered, we note an opposite trend to the behavior of the entropy generation number. The
reason for this is because the Bejan number is a fraction of the heat transfer irreversibility and the
total entropy generation number. These profiles’ behavior shows that irreversibility due to heat
transfer is very dominant and has a high impact on the Bejan number. For higher values of the
Brinkmann number and dimensionless concentration, the Bejan number decreases. Although,
they coincide after a certain value of the parameters(see Figures 17 and 21). Bejan number es-
calates with Casson parameter and dimensionless temperature (see Figures 18 and 20). For the
modified Hartmann number, a different trend is observed (see Figures 19) up to a certain value
of Z, Bejan number increases, and then retards.
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5.1 Tables and Figures

Table 1: Comparison of numerical results of f ′′(0) and θ′(0) for different values of the velocity ratio parameter when δ = Z = Nt =
Ec = 0, Pr = Le = 1, Nb→ 0 and β →∞.

ε −f ′′(0) −θ′(0)

Present [28] Present [28]
0.10 -0.96939 0.96938 0.60215 0.60281
0.30 -0.84942 0.84942 0.64727 0.64732
0.80 -0.29939 0.29938 0.75709 0.75709
1.00 0.00000 0.00000 0.79787 0.79788
2.00 2.01750 -2.01750 0.97871 0.97872
3.00 4.72928 -4.72928 1.13207 1.13209

Table 2: Variations values of skin friction coefficient, Nusselt, and Sherwood numbers for different values of some parameters when δ =
Z = 0.5, ε = 0.1, Pr = 1, Nb = 0.3, Nt = 0.3, Le = 5; β = 2, andEc = 0.1.

Z δ Nt ε Ec β

(
1 +

1

β

)
f ′′(0) −θ′(0) −φ′(0)

0.00 −1.1873 0.4047 1.5307
0.50 −0.8121 0.4572 1.5824
1.00 −0.4639 0.4930 1.6253

0.10 −0.6134 0.4974 1.6206
0.20 −0.6783 0.4850 1.6083
0.40 −0.7757 0.4650 1.5895

0.10 −0.8121 0.4995 1.6326
0.30 −0.8121 0.4572 1.5824
0.50 −0.8121 0.4193 1.5586

0.00 −0.8411 0.4496 1.5763
0.30 −0.6844 0.4808 1.6043
0.80 −0.0512 0.5496 1.6932

0.00 −0.8121 0.4787 1.5683
0.10 −0.8121 0.4572 1.5824
0.50 −0.8121 0.3705 1.6390

0.10 −2.6539 0.4664 1.6708
2.00 −0.8121 0.4572 1.5824
5.00 −0.7097 0.4540 1.5703
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Figure 2: Effect of Casson fluid on the velocity profile when δ = Z = 0.5, ε = 0.1, Pr = 1;Nb = Nt = 0.3, Le = 5 andEc = 0.1.
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Figure 3: Effect of Casson fluid on the temperature profile when δ = Z = 0.5, ε = 0.1, Pr = 1;Nb = Nt = 0.3, Le = 5 andEc = 0.1.
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Figure 4: Effect of Casson fluid on the concentration profile when δ = Z = 0.5, ε = 0.1, Pr = 1;Nb = Nt = 0.3, Le = 5 and
Ec = 0.1.
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Figure 5: Effect of velocity ratio parameter on the velocity profile when β = 2, δ = Z = 0.5, Pr = 1;Nb = Nt = 0.3, Le = 5 and
Ec = 0.1.
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Figure 6: Effect of velocity ratio parameter on the temperature profile when β = 2, δ = Z = 0.5, Pr = 1;Nb = Nt = 0.3, Le = 5 and
Ec = 0.1.
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Figure 7: Effect of velocity ratio parameter on the concentration profile when β = 2, δ = Z = 0.5, Pr = 1;Nb = Nt = 0.3, Le = 5
andEc = 0.1.
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Figure 8: Effect of modified Hartmann number on the velocity profile when β = 2, δ = 0.5, ε = 0.1, Pr = 1;Nb = Nt = 0.3, Le = 5
andEc = 0.1.
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Figure 9: Effect ofmodifiedHartmann number on the temperature profilewhenβ = 2, δ = 0.5, ε = 0.1, Pr = 1;Nb = Nt = 0.3, Le =
5 andEc = 0.1.
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Figure 10: Effect of modified Hartmann number on the concentration profile when β = 2, δ = 0.5, ε = 0.1, Pr = 1;Nb = Nt =
0.3, Le = 5 andEc = 0.1.
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Figure 11: Entropy generation number for different values of the Reynold’s number whenBr = 0.5,Ω = 1, Re = 10, and λ1 = 0.5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

30

40

50

60

70

80

90

100

Br =   1

Br =   5

Br =  10

Br =  20

Figure 12: Entropy generation number for different values of the Brinkmann number whenBr = 0.5,Ω = 1, Re = 10, and λ1 = 0.5.
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Figure 13: Entropy generation number for different values of the Casson parameter whenBr = 0.5,Ω = 1, Re = 10, and λ1 = 0.5.
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Figure 14: Entropy generation number for different values of the modified Hartmann number when Br = 0.5,Ω = 1, Re = 10, and
λ1 = 0.5.
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Figure 15: Entropy generation number for different values of the dimensionless temperature when Br = 0.5,Ω = 1, Re = 10, and
λ1 = 0.5.
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Figure 16: Entropy generation number for different values of the dimensionless concentration when Br = 0.5,Ω = 1, Re = 10, and
λ1 = 0.5.
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Figure 17: Bejan number for different values of the Brinkmann number.
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Figure 18: Bejan number for different values of the Casson parameter.
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Figure 19: Bejan number for different values of the modified Hartmann number.
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Figure 20: Bejan number for different values of the dimensionless temperature.
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Figure 21: Bejan number for different values of the dimensionless concentration.
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6 Conclusions

We have analyzed the flow heat and mass transfer of a Casson nanofluid past an electromag-
netic stretching Riga plate. The problem considers the effect of entropy generation, viscous dis-
sipation, Brownian motion, and thermophoresis diffusion. The results obtained in the study are
summarized as follows:

• Velocity profile decreases with the increase in Casson parameter, while it increases for in-
creasing values of the modified Hartmann number.

• Velocity profile increases when the velocity ratio parameter is less than unity, whereas it
decreases for the velocity ratio parameter values greater than unity.

• Temperature and concentration profiles increase with an increase in the Casson parameter,
whereas the profiles decrease when the velocity ratio parameter and Modified Hartmann
number are increased.

• Entropy generation increases with the increase in Brinkmann number.
• Increasing modified Hartmann number leads to a decrease in entropy generation.
• Entropy generation increases with an increase in the value of the dimensionless concentra-

tion.
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